Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(18): 13667-13674, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38563329

RESUMO

We characterize the effect of rubidium ions on water-ice nanoislands in terms of area, fractal dimension, and apparent height by low-temperature scanning tunneling microscopy. Water nanoislands on the pristine Cu(111) surface are compared to those at similar coverage on a Rb+ pre-covered Cu(111) surface to reveal the structure-giving effect of Rb+. The presence of Rb+ induces changes in the island shape, and hence, the water network, without affecting the nanoisland volume. The broad area distribution shifts to larger values while the height decreases from three bilayers to one or two bilayers. The nanoislands on the Rb+ pre-covered surface are also more compact, reflected in a shift in the fractal dimension distribution. We relate the changes to a weakening of the hydrogen-bond network by Rb+.

2.
ACS Nano ; 18(18): 11665-11674, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38661485

RESUMO

On-surface synthesis is a powerful method that has emerged recently to fabricate a large variety of atomically precise nanomaterials on surfaces based on polymerization. It is very successful for thermally activated reactions within the framework of heterogeneous catalysis. As a result, it often lacks selectivity. We propose to use selective activation of specific bonds as a crucial ingredient to synthesize desired molecules with high selectivity. In this approach, thermally nonaccessible products are expected to arise in photolytically activated on-surface reactions with high selectivity. We demonstrate for assembled 2,2'-dibromo biphenyl clusters on Cu(111) that the thermal and photolytic activations yield distinctly different products, combining submolecular resolution of individual product molecules in real-space imaging by scanning tunneling microscopy with chemical identification in X-ray photoelectron spectroscopy and supported by ab initio calculations. The photolytically activated Ullmann coupling of 2,2'-dibromo biphenyl is highly selective, with only one identified product. It starkly contrasts the thermal reaction, which yields various products because alternate pathways are activated at the reaction temperature. Our study extends on-surface synthesis to a directed formation of thermally inaccessible products by direct bond activation. It promises tailored reactions of nanomaterials within the framework of on-surface synthesis based on the photolytic activation of specific bonds.

7.
Nat Commun ; 14(1): 4500, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495625

RESUMO

Non-covalent interactions such as van der Waals interactions and hydrogen bonds are crucial for the chiral induction and control of molecules, but it remains difficult to study them at the single-molecule level. Here, we report a carbene molecule on a copper surface as a prototype of an anchored molecule with a facile chirality change. We examine the influence of the attractive van der Waals interactions on the chirality change by regulating the tip-molecule distance, resulting in an excess of a carbene enantiomer. Our model study provides insight into the change of molecular chirality controlled by van der Waals interactions, which is fundamental for understanding the mechanisms of chiral induction and amplification.

8.
Nano Lett ; 23(11): 4793-4799, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37195627

RESUMO

Solvents are increasingly known to influence chemical reactivity. However, the microscopic origin of solvent effects is scarcely understood, particularly at the individual molecule level. To shed light on this, we explored a well-defined model system of water (D2O) and carbon monoxide on a single-crystal copper surface with time-lapsed low-temperature scanning tunneling microscopy (STM) and ab initio calculations. Through detailed measurements on a time scale of minutes to hours at the limit of single-molecule solvation, we find that at cryogenic temperatures CO-D2O complexes are more mobile than individual CO or water molecules. We also obtain detailed mechanistic insights into the motion of the complex. In diffusion-limited surface reactions, such a solvent-triggered increase in mobility would substantially increase the reaction yield.

9.
J Am Chem Soc ; 145(21): 11544-11552, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37207364

RESUMO

A novel surface-confined C-C coupling reaction involving two carbene molecules and a water molecule was studied by scanning tunneling microscopy in real space. Carbene fluorenylidene was generated from diazofluorene in the presence of water on a silver surface. While in the absence of water, fluorenylidene covalently binds to the surface to form a surface metal carbene, and water can effectively compete with the silver surface in reacting with the carbene. Water molecules in direct contact with fluorenylidene protonate the carbene to form the fluorenyl cation before the carbene can bind to the surface. In contrast, the surface metal carbene does not react with water. The fluorenyl cation is highly electrophilic and draws electrons from the metal surface to generate the fluorenyl radical which is mobile on the surface at cryogenic temperatures. The final step in this reaction sequence is the reaction of the radical with a remaining fluorenylidene molecule or with diazofluorene to produce the C-C coupling product. Both a water molecule and the metal surface are essential for the consecutive proton and electron transfer followed by C-C coupling. This C-C coupling reaction is unprecedented in solution chemistry.

10.
Phys Rev Lett ; 130(10): 106202, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962030

RESUMO

Understanding the molecular and electronic structure of solvated ions at surfaces requires an analysis of the interactions between the surface, the ions, and the solvent environment on equal footing. Here, we tackle this challenge by exploring the initial stages of Cs^{+} hydration on a Cu(111) surface by combining experiment and theory. Remarkably, we observe "inside-out" solvation of Cs^{+} ions, i.e., their preferential location at the perimeter of the water clusters on the metal surface. In addition, water-Cs complexes containing multiple Cs^{+} ions are observed to form at these surfaces. Established models based on maximum ion-water coordination and conventional solvation models cannot account for this situation, and the complex interplay of microscopic interactions is the key to a fundamental understanding.

11.
J Phys Chem C Nanomater Interfaces ; 127(48): 23467-23474, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38264237

RESUMO

Hydrogen bonding is essential in electron-transfer processes at water-electrode interfaces. We study the impact of the H-bonding of water as a solvent molecule on real-time electron-transfer dynamics across a Cs+-Cu(111) ion-metal interface using femtosecond time-resolved two-photon photoelectron spectroscopy. We distinguish in the formed water-alkali aggregates two regimes below and above two water molecules per ion. Upon crossing the boundary of these regimes, the lifetime of the excess electron localized transiently at the Cs+ ion increases from 40 to 60 fs, which indicates a reduced alkali-metal interaction. Furthermore, the energy transferred to a dynamic structural rearrangement due to hydration is reduced from 0.3 to 0.2 eV concomitantly. These effects are a consequence of H-bonding in the water-water interaction and the beginning formation of a nanoscale water network. This finding is supported by real-space imaging of the solvatomers and vibrational frequency shifts of the OH stretching and bending modes calculated for these specific interfaces.

12.
Nanoscale Horiz ; 8(1): 55-62, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36331373

RESUMO

Ultra-short laser illumination is an intriguing tool for engineering material by light. It is usually employed at or above the ablation threshold. Practical applications profit from tailoring surface properties, for instance, by structural changes to the surface layer of an irradiated target. A target-orientated restructuring of surfaces on the nanoscale is much less explored. In particular, an intrinsic intensity variation across a laser spot has not yet been considered or employed. We image the unexpected nanoscale clusters formed on the Cu(111) surface upon illumination of a Cu sample far below its ablation threshold by femtosecond laser light, employing a specifically-developed multi-scale approach. We unravel that these clusters vary significantly in size and shape across the micrometer-scale 400 nm 50 fs laser spot (repetition rate: 250 kHz). There are three qualitatively different regions separated by sharp changes. The observations highlight the importance of local fluence for specific types of nanoclusters. Ultra-short laser illumination represents a non-trivial interplay between photo-thermal and electron-induced mechanisms, transport of heat and electrons, and material properties, which we discuss for identifying the underlying principles. Our study demonstrates that a multitude of as yet unconsidered processes are involved in the tailoring of nanoscale materials by ultra-short laser light.


Assuntos
Terapia a Laser , Terapia a Laser/métodos , Lasers , Temperatura Alta , Propriedades de Superfície , Engenharia
13.
Angew Chem Int Ed Engl ; 61(43): e202212245, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36056533

RESUMO

Chirality switching of self-assembled molecular structures is of potential interest for designing functional materials but is restricted by the strong interaction between the embedded molecules. Here, we report on an unusual approach based on reversible chirality changes of self-assembled oligomers using variable-temperature scanning tunneling microscopy supported by quantum mechanical calculations. Six functionalized diazomethanes each self-assemble into chiral wheel-shaped oligomers on Ag(111). At 130 K, a temperature far lower than expected, the oligomers change their chirality even though the molecules reside in an embedded self-assembled structure. Each chirality change is accompanied by a slight center-of-mass shift. We show how the identical activation energies of the two processes result from the interplay of the chirality change with surface diffusion, findings that open the possibility of implementing various functional materials from self-assembled supramolecular structures.

14.
Phys Chem Chem Phys ; 24(7): 4485-4492, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35113111

RESUMO

The adsorption orientation of molecules on surfaces influences their reactivity, but it is still challenging to tailor the interactions that govern their orientation. Here, we investigate how the substituent and the surface structure alter the adsorption orientation of halogenated benzene molecules from parallel to tilted relative to the surface plane. The deviation of the parallel orientation of bromo-, chloro-, and fluorobenzene molecules adsorbed on Cu(111) and Cu(110) surfaces is determined, utilising the surface selection rule in reflection-absorption infrared spectroscopy. On Cu(111), all three halogenated molecules are adsorbed with their molecular plane almost parallel to the surface at low coverages. However, they are tilted at higher coverages; yet, the threshold coverages differ. On Cu(110), merely bromo- and chlorobenzene follow this trend, albeit with a lower threshold for both. In contrast, fluorobenzene molecules are tilted already at low coverages. The substantial influence of the halogen atom and the surface structure on the adsorption orientation, resulting from an interplay of molecule-molecule and molecule-surface interactions, is highly relevant for reactivity confined to two dimensions.

15.
Nano Lett ; 22(1): 340-346, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958578

RESUMO

Water diffusion across the surfaces of materials is of importance to disparate processes such as water purification, ice formation, and more. Despite reports of rapid water diffusion on surfaces the molecular level, details of such processes remain unclear. Here, with scanning tunneling microscopy, we observe structural rearrangements and diffusion of water trimers at unexpectedly low temperatures (<10 K) on a copper surface, temperatures at which water monomers or other clusters do not diffuse. Density functional theory calculations reveal a facile trimer diffusion process involving transformations between elongated and almost cyclic conformers in an inchworm-like manner. These subtle intermolecular reorientations maintain an optimal balance of hydrogen-bonding and water-surface interactions throughout the process. This work shows that the diffusion of hydrogen-bonded clusters can occur at exceedingly low temperatures without the need for hydrogen bond breakage or exchange; findings that will influence Ostwald ripening of ice nanoclusters and hydrogen bonded clusters in general.


Assuntos
Hidrogênio , Água , Difusão , Hidrogênio/química , Ligação de Hidrogênio , Temperatura , Água/química
16.
Angew Chem Int Ed Engl ; 60(33): 18217-18222, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-33999493

RESUMO

Though largely influencing the efficiency of a reaction, the molecular-scale details of the local environment of the reactants are experimentally inaccessible hindering an in-depth understanding of a catalyst's reactivity, a prerequisite to maximizing its efficiency. We introduce a method to follow individual molecules and their largely changing environment during a photochemical reaction. The method is illustrated for a rate-limiting step in a photolytic reaction, the dissociation of CO2 on two catalytically relevant surfaces, Ag(100) and Cu(111). We reveal with a single-molecule resolution how the reactant's surroundings evolve with progressing laser illumination and with it their propensity for dissociation. Counteracting processes lead to a volcano-like reactivity. Our unprecedented local view during a photoinduced reaction opens the avenue for understanding the influence of the products on reaction yields on the nanoscale.

17.
J Am Chem Soc ; 143(12): 4653-4660, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33599124

RESUMO

Metal carbenes are key intermediates in a plethora of homogeneous and heterogeneous catalytic processes. However, despite their importance to heterogeneous catalysis, the influence of surface attachment on carbene reactivity has not yet been explored. Here, we reveal the interactions of fluorenylidene (FY), an archetypical aromatic carbene of extreme reactivity, with a Ag(111) surface. For the first time, the interaction of a highly reactive carbene with a metal surface could be studied by scanning tunneling microscopy (STM). FY chemisorbs on Ag(111) with an estimated desorption energy of 3 eV, forming a surface bound silver-carbene complex. The surface interaction leads to a switching of the electronic ground state of FY from triplet to singlet, and to controlled chemical reactivity. This atomistic understanding of the interplay between carbenes and metal surfaces opens the way for the development of novel classes of catalytic systems based on surface metal carbenes.

18.
J Chem Phys ; 154(1): 014701, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33412865

RESUMO

We investigate the polymorphism of complexes formed by the hydration of a functionalized azobenzene molecule by low-temperature scanning tunneling microscopy. Under conditions at which the water-less azobenzene molecules remain as monomers on Au(111), co-adsorption of water leads to water-azobenzene complexes. These complexes prefer to adopt linear arrangements of the azobenzene mediated by its functionalized end groups. Such structures may serve as model systems for investigating the influence of a solvent on a surface reaction.

19.
J Phys Chem Lett ; 11(4): 1310-1316, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31985230

RESUMO

Electron attachment and solvation at ice structures are well-known phenomena. The energy liberated in such events is commonly understood to cause temporary changes at such ice structures, but it may also trigger permanent modifications to a yet unknown extent. We determine the impact of electron solvation on D2O structures adsorbed on Cu(111) with low-temperature scanning tunneling microscopy, two-photon photoemission, and ab initio theory. Solvated electrons, generated by ultraviolet photons, lead not only to transient but also to permanent structural changes through the rearrangement of individual molecules. The persistent changes occur near sites with a high density of dangling OD groups that facilitate electron solvation. We conclude that energy dissipation during solvation triggers permanent molecular rearrangement via vibrational excitation.

20.
Phys Chem Chem Phys ; 22(2): 497-506, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825407

RESUMO

We investigate superstructures formed by CO2 on Ag(100) and Cu(111) from small clusters forming at 21 K up to multilayers grown at 43 K by low temperature scanning tunneling microscopy. On both surfaces, CO2 nucleates only at defects, here at co-adsorbed CO. At the lower adsorption temperature, superstructures of different symmetry coexist on both surfaces at submonolayer coverage, while the superstructures formed at the higher adsorption temperature differ largely for the two surfaces. On Ag(100), the CO2 monolayer exhibits a long-range order interrupted by antiphase domain boundaries. On Cu(111), a random distribution of domain structures of different symmetry leads to a monolayer without long-range order. Surprisingly, the degree of ordering is inverted for the 2nd layer of CO2. On Ag(100), the coexistence of different superstructures in the 2nd layer leads to reduced long-range order. On Cu(111), a hexagonal 2nd layer exhibits long-range order. A layer of a similar superstructure, hexagonal with long-range order, exists as the 3rd layer of Ag(100). Despite the different substrates, a multitude of common structural features of CO2 exist. Hexagonal layers grow with a long-range order on less ordered layers on both surfaces. Our results suggest that the preferred structure of a CO2 layer is hexagonal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...